MSRC-5000SCA
Appendix D
rev. 2.1 |

Software Communications Architecture Specification

APPENDIX D. DOMAIN PROFILE

M SRC-5000SCA
Appendix D
rev. 2.1

Revision Summary

1.0

release for prototype implementation and validation

101

correction of XML syntax errors; deleted deploymentattributedefinition element (D.4.2),
which was redundant with simple (with the addition of action element to simple) and more
in line with the CORBA components spec.; deleted deploymentattribute (D.4.3) for same
reason; changed deploymentattributedef element to propertyref (D.2.1.8.10.1) for
consistency with those changes; changed "access" to "io" to be consistent with SCAS
terminology; added softpkgrefid attribute to SPD and SAD to alow profile to refer to afile
already loaded in radio; clarified the initial implied value of the enumeration element
(D.4.1.1.6); corrected and clarified description of ports element in D.5.1.4.2.

Added section D.7 and Attachment 1 for complete DTDs.

11

Incorporate approved Change Proposals, numbers 162, 163, 164, 165, 166, 167, 168, 169,
170,171,172, 173, 174, 176, 202, 203, 212, 214, 216.

2.0

Incorporate approved Change Proposals, numbers 152, 270, 281, 308, 309, 318, 321.

2.1

Incorporate approved Change Proposals, numbers 88, 183, 306, 355, 384, 468 also
complete some changes from CP 88, 142, 318, 473, 477 not incorporated in v2.0.

Change Proposals are controlled by the JTRS Change Control Board. CPs incorporated into the
SCA are considered "closed" and can be seen on the JTRS web site at:
www.jtrs.sarda.army.mil/docs/documents/sca_ccb.html

MSRC-5000SCA

Appendix D
rev. 2.1

Table of Contents
[APPENDIX D DOMAIN Profil€.......c.cooiiiiiieiiiciiisiecee et D-1
D.1 DePlOyMENt OVEIVIEW. ...ttt et a e e e e eareeeneeenreeanes D-1
D.2 Software Package DESCIIPIOL.cc.veereeeeieeieeetiecieeeteeeieeeteeetee e eeteeereeereesneeereeereeenns D-3
D.2.1 SOftWar€ PACKAGE.cueveveeeeeeieeeee et en e D-3
D.2.1.1 PrOPErtYfilE. .ottt ettt esssssesssenessesssssessnsesssnsessnsssssnsessnsesensnsesans D-4
D21 1T TOCAITITE. .cvevoveeeeeeeeeeeeeeeeeeeeeseeeseeeseseeeesneseseeseeeesneseeeseeeeseeseseeseeeeeesneees D-5
D.2.1.2 10 ittt r et e ereene e e e e enrenresrears D-5
D.2.1.3 AULNOT.....ccviiiiiiciece ettt e et e et e e nreeaneeereeeneeans D-5
D214 GESCIIPHON. cooooovooeoooooeooosocooresiessioseesseessesseesseesesssessemesessesseeseeeeeseeeseeseesseeeee D-5)
D.2.0.5 OESCIIPION. ittt ettt e e et e e e s esbeeassenseesesassseeessassseeesssnssesessnnes D-6
D.2.1.6 IMPIEMENTALION.vieieetiieeeieeet ettt en e sr e erene s D-6
D.2.1.6.1 Propertyfile. ..ccoeeceieceeeeiieeeeeeeee e D-7
D.2.1.6.2 AESCITPUON. ...cuvietiecieeeteeceeeee ettt eete e et e ereeereeenreeseeenreenseesneeenns D-7
D.2.1.6.3 COUR.ocueiiuieitieee ettt ettt et et e et eetaeateeeneeenteeeneeereeaneeereenns D-7
D .2.01.6.4 COMDIETciiiueiiiieeiie e eetieeeeeieeeeete e e sseaeeeesasseeessssnseeesssnseeeessssreeess D-8
D.21.65 programmMingIanQUAGE.cccooveevererererreerereremeresrerernnseenerennneneenes D-8
D.2.1.6.6 hUMANIANQUAGE.ecooueeeiriieiiiieeiieeeie e eetteeeeteeeeeteeesreeesnreeeenreeeanseeens D-8
I G o PP PPPRPPP D-8
A D-9
D.2.1.6.9 dEDENUENCY. ...t e ettt e e eebereeeenreeessnreeeeaannreeeas D-9
D T T = T, D-10|
DA o= D-10
D I T A= e —— D-10
D.3 Device Package DESCIIPLON.c.eveveeeeeeteeteeeeteteeeteeeeteeeet e teteeee e nereenerennenerennane D-11
D.3.1 DEViCE PACKAOE. ...cvveivviectictetieectssssesssscssseesessesssssensessnsssessnssssnsssessnsesssnsessnsssnas D-11
D3 LT TIE cooioieeeceeeeeeeeee e e e reee s e veeeeneesreneeresreneeesnenesneneeeeneneeneneeenes D-11
[D.3.1.2 AULNOT . ..c.iiice et e e r e e e e ere e e e eneenreenes D-11
D.3.1.3 ESCIIPLION. ..ottt et e e e e e see e D-11
D.314 NWABVICErOQISTANION.oooooooesoeoosoocsoosoiooessossesoeessessisseeeseesessesseeeseeeeeseees D-12]
D T s = a0 il - D-12
D.3.1.4.2 ESCIIPLION.eevieieeieeieeieeeecteee e eeesteeeeeaeesteeseeeseenseeneesseenseeneesseesenneessen D-12
D.3.1.4.3 MANUFACTUNEF . ..ot e e e eneas D-12
D.3.1.4.4 mMOEINUMDEN.c.oeoeeeeeeeeeeeeeee e e e D-13
D.3.1.45 dEVICECIASS.....cueiciieiieceece et aneas D-13
D.3.1.4.6 ChildNWEVICE. ..o e e sr e e ereenae e D-13
D.3.147 hwdeviCeregiSlration.ococcevevreeeerereeeererererereeererereneerererennnennenns D-13
D.3.1.4.8 AeVICEPKONES.c.vveiieiiccieeeeee ettt eee et e et e e ereeeenreas D-13
Q.é PropertieS DESCIIPLON.c.cveveverereeeteeietetieeeteeeieteeeeteseteteenesesseteseenesessereseenesesseseneas D-14
R T L= D-14
DT D-14
D e == oo VA D-15
D.4.1.1.2 VAIUE. ...t e et e et e e eaeeeenbeeeenreeeenreas D-15
D TV T —— D-15
DA 1. 1.4 TONGE. . .cctiiiteeei ettt e e e e e e ar e eanreas D-15

MSRC-5000SCA

Appendix D

rev. 2.1

D.A.1.15 QNUMEIAHIONS.veeeeeeeeeeeeeeeeeseeereereenseeeeeeseeesnceeseseeeeencnssneeeseseeneas D-15|
D e T D-16
D O = T (o o PP D-17
D.4.1.2 SIMPIESEOUENCE. ..ottt eeteeete et e ereeereesneeebeesnseeaseesseeeseesses D-17
Dt R S (= PSP D-18
DT T Ty T = — D-18
D.4.1.3.2 TESUMVAIUE.veeeoeeeeeeeeeeeeeeeeeereeessneesneneeesneneseeseeneseeseseeseeeeeeseeeeees D-18
DALA SITUCE oo D-18
E.4.1.4.1 CONFIGUIAtTONKING. ... D-19
ALS SHTUCESEOUEBINCE. ...ttt ettt e it e et e et e e snneeennneeesnreeenneeas D-19
D.5 Software COMPONENE DESCITDLONeeeeeeeeeseeeeereeerseeeeerereeseseeeseesseseeeesnesseeeeseene D-20)|
D.5.1 SOftWar€COMPONENLE.........c.civeeieetiireeeieeeteiseeieee et eer e e eer e eeesesrereneerenesrenens D-20
D.5.1.1 COrDAVEI SION. ..ottt eree e eeneas D-20
D.5.1.2 COMPONENIEDIA.ooovieieieeiieetiecie ettt e et e e et e eenreeereesreeereeenees D-20
D.5.1.3 COMPONENTIYIIE. ...ttt e e eeeesneas D-21
D.5.1.4 COMPONENIIEAIUIES.eeieeeiiiiieeiiieeeetiiieeeeiteieeeeeteeeesseseeeessasseeeesasseessssssseeessans D-21
D5.1.41 SUPPOITSINIEITACE.cocovveeeeeeerereeeeeeeeeeeeeeerererreeeeereeenreneerennnnenneens D-21
D .5.1.4.2 [POITS.....uutiiiiiiiiiiiiiittiiiieeeeeseeeittreeeeeeseseaaanrreeeeesesesaaansrrereesaneseaaasrrrrresesseesnns D-21
%5.1.5 INEENACES. . D-22
I e o= = — D-22
D.6 SOftware ASSEMDIY DESCITDON.oeeeeeeeeeeeseeeseeeeeeeeeeesereeeeseeeeeeseensnseeeesnesseceeseene D-23
DT 1= T e T D-23
P.6.2 componentfiles. ... D-23
D.6.2.1 COMPONENIIE.ccveeeeieeiieeieteeeeeeteeeeee ettt eeeee et eeeae e eeeaesreseeeereerenes D-24
D.6.3 PArtItIONING.c.cveveeieetieeteieieteeteteeieteteeteteeeeteeeteseeteteeseseseererensesesereseenesesnereneanes D-24]
D.6.3.1 COMPONENPIACEIMENL.vveiviieeececeeseies e seesssssesessessssssssnsessssnsesnsessnsnsans D-24
D.6.3.1.1 componentfilerel.c.ccoorooeeeeeeceeeeeeeeeeceeeeeeeeeeeeeeeeeereeerenenn e D-24
D.6.3.1.2 componentinStantialioN.cc.ceeeveeeeueeieiieietiieeeiieeeeteeeeeieeeereeeereeeeneeas D-25
Q.EE;.S.Z NOSECOIOCALION. ...ttt eeneerenne D-27
6.3.2.1 cOMPONENtPlACEMENT.cveeeeeeeeeeeeeee et e e e e e eeeeneenes D-27
D.6.4 ASSEMDIYCONIION O . ..v.oeeeeeeeeeeeeeeeeeseeesereeeeseeeeseeeeesnceeseseeesncneas D-27
D= e T T D-27
D.6.5.1 CONNECHNLEITACE.vcvveeeveeeeeeeeeeeteeeteteeeeteeeeteeeeeeteeeseeeeeeseenseeessesseneseesreneaneres D-27
D.6.5.1.1 USEIPONT. ... ee et e e et e e e et e e e e et eeeeanneeeeeennneeeeenneees D-28
D.6.5.1.2 PrOVIAESPONT. ..ottt es D-30
D.6.5.1.3 componentssupPOrtediNEEIfACE.c..eeevieeeeiiiieeiieieeiee e eeeeeeeeenes D-31
D.6.6 EXEEINAIPOITS.......cciveeieeeietee ettt D-32
D.7 Device Configuration DESCITDION.veueeweveeeeeerseeeeeessseseesrseseesensseesenseseeeesnseas D-33
8 R o (= o] o1 o PP PPPPPOPTN D-33
7.2 devicemanager SOMPKG.evve et eee e e e e eeeeeeneesteeeeeneenreeneenns D-33
D.7.3 COMPONENEIITES.......eeiiieiiiieeeiie ettt eeeeee e ettt e e s eeabeeeseessessssesseessannes D-34
D S T Lo D-34|
D.7.4.1 componentplacement. D-34
D.7.4.1.1 componentfileref...........ccoocuiiiiiiiiiiiececeee e D-34]
D.7.4.1.2 dePIOYONUEVICE. ... D-35

MSRC-5000SCA

Appendix D

rev. 2.1

D.7.4.1.3 0OVICEOKANNC..cooeeeeeeeeeeeeeeeereeeeeeeeseeeeeeneeeeseneeeeseceeeneeesnsecncas D-35|

D.7.4.1.4 comMPOSItEPArtOfdEVICE.ccueeeeeeieieceectece et ee e ste e eae e nte e D-35

D.7.4.1.5 componentinStantialioN.c.cecveeereeiieeitieeieeeeeeieeeteeeieeseeeeeeereeenees D-35

D.7.5 CONMNECHIONS.c..eeeeeeeeeieeeeeee et te e e e tee st e eeesneenseeneeeseesteeneesneenseeneesseenes D-36

D. 7.6 dOMAINMANAGENeiieieeieeeeeieeeeeeee ettt eea et e et e sseeseeeeesreeseeeneens D-36

D.7.7 fIlESYSIEIMNAIMES. ...ttt e et e e ettt e e eeeateeesssnneeasssaseeeessasereesessseeesssnnees D-37

D.8 DomainManager Configuration DESCIPION.............cccccoerevecerereeresesreresrersrerneernen. D-38

D.8.1 AESCIIPIION. ..ttt tee et e et e et eeeteeeebeeeenseeesnseeeenseeesnseeesnseessnseeas D-38

D.8.2 domaiNMmanager SOMPKG.veeueeeeeieieieeiieeeieeetee e D-38

R D-38

D.O PrOfil@ DESTITIDION. c......eeeeeeeeeeeeeeeeeeseeseseeeeseeeeseeeeaenneesnceeensneesncessneneseenensseceens D-38

D.10 Document TYPE DEFINITIONS...........cciueuiiiiieiiieiieieieieiei et D-40|
List of Figures

[Figure D-1. Relationships Between Domain Profile XML File Types.........c.cccceevveveuvvrennnee.. D-2

Figure D-2. Software Package DESCIiPtOr OVEIVIEWc.cueuvverereeereeverereerereeenenerevereennan, D-3

D-iii

M SRC-5000SCA
Appendix D
rev. 2.1

D-iv

MSRC-5000SCA
Appendix D
rev. 2.1 |

APPENDIX D DOMAIN PROFILE

The Software Communications Architecture (SCA) specification provides architectural
specifications for the deployment of communications software into a Software Definable Radio
(SDR) device. Theintent of the SDR device isto provide are-configurable platform, which can
host software components written by various vendors to support user functional services. The
SCA specification requires portable software components to provide common information called
adomain profile. Theintent of this appendix isto clearly define to the component developers
the requirements of information and format for the delivery of thisinformation. The domain
management functions use the component deployment information expressed in the Domain
Profile. Theinformation isused to start, initialize, and maintain the applications that are
installed into the SCA-compliant system.

The Object Management Group (OMG) is a standards organization supporting the definition of
specifications for distributed computing environments. The Object Management Group has
recently created the CORBA Components Specification that defines a process for deployment of
software components into an object-oriented framework. The format used by the CORBA
Components Specification for deployment is the eXtensible Markup Language (XML).

This specification has been designed to follow the philosophy of the CORBA Components
Model (OMG TC Document orbos/07-01-99: Chapter 10 - Packaging and Deployment). Dueto
the differences between the SCA Core Framework IDL and the CORBA Components
Specification IDL, it was necessary to modify some of the deployment principles for use in the
SCA. This specification defines the XML Document Type Definition (DTD) set for usein
deploying SCA components. The complete DTD set is contained in Attachment 1 to this
Appendix.

D.1 DEPLOYMENT OVERVIEW.

The hardware devices and software components that make up an SCA system domain are
described by a set of filesthat are collectively referred to as a Domain Profile. A Domain Profile
contains a set of Software Profiles. A Software Profileis either a Software Assembly Descriptor
(for applications) or a Software Package Descriptor (for all other software components and
hardware devices). These files describe the identity, capabilities, properties, and inter-
dependencies of the hardware devices and software components that make up the system. All of
the descriptive data about a system is expressed in the XML vocabulary. For purposes of this
SCA specification, the elements of the XML vocabulary have been based upon the OMG's
CORBA Components specification (orbos/99-07-01). (Note: At the time of thiswriting, 99-07-
01 isadraft standard).

Figure D-1]depicts the relationships between the XML files that are used to describe a system's
hardware and software assets (those describing hardware are colored green; Properties Files
apply to both software and hardware and is colored blue). The XML vocabulary within each of
these files describes a distinct aspect of the hardware and software assets.

A Software Assembly Descriptor file describes how multiple components of an assembly, i.e., an
application, are deployed and interconnected. A Software Assembly Descriptor file is associated
with one or more Software Package Descriptor files. Each component of the Software Assembly

D-1

M SRC-5000SCA
Appendix D
rev. 2.1

Descriptor is described in a Software Package Descriptor file. Information about the interfaces
that a component publishes and/or consumes are contained in a Software Component Descriptor
file. Each Software Component Descriptor file is associated with a Software Package Descriptor
file that describes one or more implementations of the software component. Software properties
are described in a Properties File that may be applicable to all implementations of the
component, i.e., associated at the Software Package Descriptor level or applicable to asingle
implementation of the component.

Three types of files, a Device Package Descriptor, a Properties File, and a Device Configuration
Descriptor describe hardware devices and are known collectively as a Device Profile. Device
Profiles are part of alogical CF Device's Software Profile. A Device Package Descriptor file
identifies a class of adevice. Properties Files are associated with Device Package Descriptors.
The Properties File contains information about the properties of a device such as serial number,
processor type, OS type and allocation capacities.

A Device Configuration Descriptor file describes how many components are initially started up
on the device, and how to find the CF DomainManager. Child CF Deviceswill have anull
Device Configuration Descriptor file when not a parent CF Device. Each component of the
Device Configuration Descriptor is described in a Software Package Descriptor file.

A DomainManager Configuration Descriptor file contains configuration information for the CF
DomainManager. A Software Package Descriptor file can describe the CF DomainManager’s
implementation in the DomainManager Configuration Descriptor file.

Domain Profile 1

<<DTDElement>>
DomainManager Descriptor

0..n

<<DTDElement>>
Software Assembly Descriptor

<<DTDElement>>
Device Configuration Descriptor

T

Software
Profile

1.n

<<DTDElement>> <<DTDElement>> SoftwareProfile <<DTDElement>>
Software Component Descriptor t Software Package Descriptor| Profile Descriptor

1n

0.n 1 /Device Configuration Profili
0.1 0.n

| <<DTDElement>>
_ <<DTDElement>> o.n <<DTDElement>> Device Configuration Descriptor
Device Package Descriptor ———— = Properties Descriptor

Figure D-1. Relationships Between Domain Profile XML File Types

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.2 SOFTWARE PACKAGE DESCRIPTOR.

The SCA Software Package Descriptor is used at deployment time to load an SCA compliant
component and its various implementations. The information contained in the Software Package
Descriptor, as shown in[Figure D-2] will provide the basis for the Domain Management function
to manage the component within the SCA architecture.

softpkg

propertyfile

component
descriptor

implementation

propertyfile

implementation

propertyfile

Figure D-2. Software Package Descriptor Overview

Figure D-2]details the various elements of the XML file that is to be delivered to the CF
DomainManager during the installation of every component. The software package descriptor
may contain various implementations of any given component. Within the specification of a
software package descriptor several other files are referenced including a component level
propertyfile and a software component descriptor file. Within any given implementation there
may be additional propertyfiles.

D.2.1 Software Package.

The softpkg element indicates a Software Package Descriptor (SPD) definition. The softpkg id
uniquely identifies the package and isa DCE UUID. The DCE UUID is as defined by the DCE
UUID standard (adopted by CORBA). The DCE UUID format starts with the characters "DCE:"
and isfollowed by the printable form of the UUID, a colon, and a decimal minor version
number, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". The decimal minor
version number isoptional. The version specifies the version of the component; name is a user-
friendly label for the softpkg. The type attribute indicates the type of component

D-3

M SRC-5000SCA
Appendix D
rev. 2.1

implementation. All files referenced by the software package are located in the same directory
asthe SPD file.

The set of properties for a software package may come from several sources. The propertiesto
be used for a software package are the union of propertiesin the following precedence order:

1. SPD Implementation Properties -
2. SPD level properties
3. SCD properties

Any duplicate properties having the same ID areignored. Duplicated properties must be the
same property type, only the value can be over-ridden. The implementation properties are only
used for the initial configuration and creation of a component by the CF ApplicationFactory and
cannot be referenced by a SAD componentinstantiation componentproperties or

resour cefactoryproperties e ement.

<! ELEMENT sof t pkg
(title?
, aut hor+
, description?
, propertyfile?
, descriptor?
, inmplenmentation+
, usesdevi ce*
)>
<I ATTLI ST soft pkg

id ID #REQUI RED

nane CDATA #REQUI RED

type (sca_conpliant | sca_non_conpliant)
"sca_conpliant"

ver si on CDATA #1 MPLI ED >

D.21.1 propertyfile.

The propertyfile element is used to indicate the local filename of the property file associated with
the software package. The intent of the propertyfile will be to provide the definition of
properties elements common to all implementations of the component being deployed in the
software package (softpkg).

Property files may also contain properties elements that are used in definition of command and
control id value pairs used by the SCA Resource configure() and query() interfaces. The format
of the property fileis described in the Properties Descriptor (Section D.4).

D-4

MSRC-5000SCA
Appendix D
rev. 2.1 |

<! ELEMENT propertyfile
(localfile |
) >

<I ATTLI ST propertyfile
type CDATA #l MPLI ED> |

D.2111 localfile

The localfile element is used to reference afile in the same directory as this XML fileor a
directory that is relative to the directory where this XML fileislocated. When the name attribute
isasimple name then the file exists in the same directory asthis XML file. A relative directory
indication begins either with “../” meaning parent directory and “./” means current directory in
the name attribute. Multiple“../” and directory names can follow theinitial “../” in the name
atribute. All name attributes must have a simple name at the end of the file name.

<! ELEMENT | ocal file EMPTY>
<! ATTLI ST local file
name CDATA #REQUI RED>

D.2.1.2 title

Thetitle element is used for indicating atitle for the software component being installed by
softpkg.

< ELEMENT title (#PCDATA)>

D.2.1.3 author.

The author element will be used to indicate the name of the person, the company, and the web
page of the developer producing the component being installed into the system.

<! ELEMENT aut hor
(name*
| company?
| webpage?
) >
<! ELEMENT nane (#PCDATA) >
<! ELEMENT conpany (#PCDATA) >

<! ELEMENT webpage (#PCDATA) >

D.2.1.4 description.

The description element will be used to describe any pertinent information about the software
component being delivered to the system.

M SRC-5000SCA
Appendix D
rev. 2.1

<! ELEMENT descri ption (#PCDATA) >

D.2.15 descriptor.

The descriptor element points to the local filename of the software component descriptor file that
is used to document the interface information for the component being delivered to the system.

In the case of the SCA Component, the descriptor will contain information about three aspects of
the component (the component type, message ports, and IDL interfaces). The software
component descriptor fileis optional, since some SCA components are non-CORBA components
like digital signal processor (DSP) “c” code (see section on software component descriptor file,
section D.5).

<! ELEMENT descri ptor
(localfile
) >
<! ATTLI ST descri ptor
name CDATA #l MPLI ED>

D.21.6 implementation.

The implementation element contains descriptive information about the particular
implementation template for the software component contained in the softpkg. The
implementation id uniquely identifies the implementation and isa DCE UUID vaue as stated
section The implementation is intended to allow multiple component templates to be
delivered to the system in one software package. Each implementation isintended to allow the
same component to support different types of processors, operating systems, etc. The
implementation element will also alow definition of implementation-dependent properties for
use in CF Device, CF Application, or CF Resource creation. Theid element isintended to
provide a universal unigque identifier for the specific implementation of the component. The
compiler, programminglanguage, humanlanguage, os, processor, and runtime elements are
optiona dependency elements. Additional dependency elements can be stated in the dependency
element.

<! ELEMENT i npl enentation
(description?
, propertyfile?
, code
, conpiler?
, progranmm ngl anguage?
, humanl anguage?
, runtinme?
., (os
| processor
| dependency
)+
, usesdevi ce*
)>
<! ATTLI ST i npl emrent ati on
id ID #REQUI RED
aepconpl i ance (aep_conpliant | aep_non_conpliant) “aep_conpliant”>

M SRC-5000SCA
Appendix D
rev. 2.1

D.2.1.6.1 propertyfile.

The propertyfile element is used to indicate the local filename of the property file associated with
this component package. Although the specification does not restrict the specific use of the
property file based on context, it isintended within the implementation element to provide
component implementation specific properties el ements for use in command and control id value
pair settings to the CF Resource configure() and query() interfaces. See the descriptions of the
property file formatsin the Properties Descriptor, section

<! ELEMENT propertyfile
(localfile
)>

<! ATTLI ST code propertyfile
type CDATA #l MPLI ED>

<! ELEMENT | ocal file EMPTY>
<I ATTLI ST localfile
name CDATA #REQUI RED>

D.21.6.2 description.

The description element will be used to describe any pertinent information about the software
component implementation that the software devel oper wishes to document within the software
package profile.

<! ELEMENT descri ption (#PCDATA) >

D.21.6.3 code.

The code element will be used to indicate the local filename of the code being delivered by the
softpkg for this implementation of the software. The stacksize and priority are options
parameters for the CF ExecutableDevice execute operation. These values are unsigned long.
The type attribute for the code element will also indicate the type of file being delivered to the
system. The entrypoint element provides the means for providing the name of the entry point of
the component being delivered. The valid values for the type attribute are: “Executable”,
“KernelModul€e’, “ SharedLibrary”, and “Driver.”

The meaning of the code type attribute:

1. Executable meansto use CF LoadableDevice |oad and CF ExecutableDevice execute.
Thisisa“main” process.

2. Driver and Kernel Module means load only.

3. SharedLibrary means dynamic linking.
a. Without a code entrypoint element means load only.
b. With acode entrypoint element means load and CF Device execute.

<IELEMENT code

D-7

M SRC-5000SCA
Appendix D
rev. 2.1

(localfile
, entrypoint?
, stacksize?
, priority?
) >
<! ATTLI ST code
type CDATA #l MPLI ED>

<! ELEMENT | ocal file EMPTY>
<! ATTLI ST local file
name CDATA #REQUI RED>

<! ELEMENT entrypoi nt (#PCDATA) >
<! ELEMENT st acksi ze (#PCDATA) >

<! ELEMENT priority (#PCDATA)>

D.2.1.64 compiler.

The compiler element will be used to indicate the compiler used to build the software component
being delivered by softpkg. The required name attribute will specify the name of the compiler
used, and the version attribute will contain the compiler version.

<! ELEMENT conpi |l er EMPTY>

<! ATTLI ST conpil er
name CDATA #REQUI RED
ver si on CDATA #| MPLI ED>

D.2.1.6.5 programminglanguage.
The programminglanguage el ement will be used to indicate the type of programming language
used to build the component implementation. The required name attribute will specify a
language such as“c”, “c++”, and “java’..
<! ELEMENT pr ogr ammi ngl anguage EMPTY>
<! ATTLI ST pr ogrami ngl anguage
name CDATA #REQUI RED
ver si on CDATA #l MPLI ED>

D.2.1.6.6 humanlanguage.
The humanlanguage element will be used to indicate the human language the component is
developed for.

<! ELEMENT humanl anguage EMPTY>
<! ATTLI ST humanl anguage
nane CDATA #REQUI RED>

D.21.6.7 os.

The os element will be used to indicate the operating system that the software component is built
to operate on. The required name attribute will indicate the name of the operating system and the
version attribute will contain the operating system. The os attributes will be defined in a

MSRC-5000SCA
Appendix D
rev. 2.1 |

property file as an allocation property of string type and with names os_name and os_version and
with an action element value other than “external”. The os element is automatically interpreted |
as a dependency and compared against allocation properties with names of os_name and

os version. Legal os_name attribute values are listed in Attachment 2 to this appendix. |

<! ELEMENT os EMPTY>

<! ATTLI ST os
nanme CDATA #REQUI RED
ver si on CDATA #| MPLI ED>

D.2.1.6.8 processor. |
The processor element will be used to indicate the processor and/or processor family that this
software component is built to operate on.. The processor name attribute will be defined in a |
property file as an alocation property of string type and with aname of processor_name and

with an action element value other than “external”. The processor element is automatically |
interpreted as a dependency and compared against an allocation property with a name of
processor_name. Legal processor _name attribute values are listed in Attachment 2 to this |
appendix.

<! ELEMENT processor EMPTY><! ATTLI ST pr ocessor |
name CDATA #REQUI RED>

D.2.1.6.9 dependency.

The dependency element is used to indicate the dependent relationships between the components
being delivered and other components and devices in the SCA compliant system. The softpkgref
element is used to specify a Software Package file that must be loaded before this component is
loaded in the system in order for the component to load without errors. The propertyref will
reference a specific allocation property by a unique identifier, and provides the value that will be
used against a CF Device capacity model. The CF DomainManager will use these dependency
definitions to assure that components and devices that are necessary for proper operation of the
implementation are present and available. The type attribute is descriptive information
indicating the type of dependency.

<! ELEMENT dependency
(softpkgref
| propertyref
)>

<! ATTLI ST dependency
type CDATA #REQUI RED>

D.21.6.9.1 softpkgref.

The softpkgref element refers to an external softpkg. The softpkgref element indicates aload
dependency. Thefileisreferenced by localfile element. An optional implref element refersto a
particular implementation unique identifier within the softpkg descriptor.

D-9

M SRC-5000SCA
Appendix D
rev. 2.1

<! ELEMENT sof t pkgr ef
(localfile
, implref?
) >

<! ELEMENT i npl ref EMPTY>
<I ATTLI ST i npl r ef
refid CDATA #REQUI RED>

D.2.1.6.9.2 propertyref.

The propertyref element is used to indicate aunique id that references a defined simple
allocation property in the package, and a propertyvalue used by the Domain Management
function to perform the dependency check. ThisidisaDCE UUID value as specified in section

<! ELEMENT propertyref EMPTY>

<! ATTLI ST propertyref
refid CDATA #REQUI RED
val ue CDATA #REQUI RED>

D.2.1.6.10 runtime.
The runtime element specifies a runtime required by a component implementation. An example
of theruntimeisaJavaVM.

<! ELEMENT runti me EMPTY>

<! ATTLI ST runtine
nane CDATA #REQUI RED>
ver si on CDATA #l MPLI ED>

D.2.1.7 usesdevice.

The usesdevice will be used to describe any uses relationships this component has with another
device in the system. The propertyref references allocation properties to indicate the CF Device
to be used and/or the capacity needed from the CF Device.

<! ELEMENT usesdevi ce
(propertyref+

)>
<! ATTLI ST usesdevi ce
id I D #REQUI RED

type CDATA #REQU RED>

D.21.7.1 propertyref.
SeeD.2.1.6.9.2|for adefinition of the propertyref element.

D-10

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.3 DEVICE PACKAGE DESCRIPTOR.

The SCA Device Package Descriptor is the part of a Device Profile that contains hardware
device Registration attributes, which are typically used by a Human Computer Interface
application to display information about the device(s) resident in an SCA-compliant radio
system. DPD information is intended to provide hardware configuration and revision
information to a radio operator or to radio maintenance personnel. A DPD may be used to
describe a single hardware element residing in aradio or it may be used to describe the complete
hardware structure of aradio. In either case, the description of the hardware structure should be
consistent with hardware partitioning as described in the Hardware Architecture Definition in
section 4.0 of the SCA.

D.3.1 Device Package.

The devicepkg element is the root element of the DPD. The devicepkg id attribute uniquely
identifies the package and isa DCE UUID, as defined in paragraph D.2.1. The version attribute
specifies the version of the devicepkg. The format of the version string is numerical major and
minor version numbers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-
friendly label for the devicepkg.

<! ELEMENT devi cepkg
(title?
, author+
, description?
, hwdevi ceregi stration
)>

<! ATTLI ST devi cepkg

id I D #REQUI RED

nane CDATA #REQUI RED

ver si on CDATA #| MPLI ED>
D.3.1.1 title

Thetitle element is used for indicating atitle for the hardware device being described by
devicepkg.

< ELEMENT title (#PCDATA)>

D.3.1.2 author.
See[D.1.1.1|for adefinition of the author element.

D.3.1.3 description.

The description element is used to describe any pertinent information about the device
implementation that the hardware developer wishes to document within the Device Package.

<! ELEMENT descri pti on (#PCDATA) >

D-11

M SRC-5000SCA
Appendix D
rev. 2.1

D.3.1.4 hwdeviceregistration.

The hwdeviceregistration element provides device-specific information for a hardware device.
The hwdeviceregistration id attribute uniquely identifies the device and isa DCE UUID, as
defined in paragraph D.2.1. The version attribute specifies the version of the
hwdeviceregistration element. The format of the version string is numerical major and minor
version numbers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-
friendlylabel for the hardware device being registered. At a minimum, the hwdeviceregistration
element must include a description, the manufacturer, the model number and the device's
hardware class(es) (Refer to SCA section 4, Hardware Architecture Definition).

<! ELEMENT hwdevi ceregi stration
(propertyfile?
, description
, manuf act urer
, nodel nunber
, devi cecl ass
, chi | dhwdevi ce*
)>

<! ATTLI ST hwdevi ceregi stration

id I D #REQUI RED
nane CDATA #REQUI RED
ver si on CDATA #| MPLI ED>

D.3.1.4.1 propertyfile.

The propertyfile element is used to indicate the local filename of the property file associated with
the hwdeviceregistration element. The format of a property file is described in the Properties
Descriptor (Section D.4).

The intent of the property file isto provide the definition of properties elements for the hardware
device being deployed and described in the Device Package (devicepkg) or hwdeviceregistration
element.

<! ELEMENT propertyfile
(localfile

)>
<! ATTLI ST propertyfile
type CDATA #| MPLI ED>

<! ELEMENT | ocal file EMPTY>
<I ATTLI ST localfile
nane CDATA #REQUI RED>

D.3.1.4.2 description.
SeeD.2.1.4|for definition of the description element.

D.3.1.43 manufacturer.
The manufacturer element is used to convey the name of manufacturer of the device being

installed.
<! ELEMENT manuf act urer (#PCDATA) >

D-12

M SRC-5000SCA
Appendix D
rev. 2.1

D.3.1.44 modenumber.
The modelnumber element is used to indicate the manufacture's model number, for the device
being installed.

<! ELEMENT nodel nunber (#PCDATA) >

D.3.1.45 deviceclass.

The deviceclass element is used to identify one or more hardware classes that make up the device
being installed (e.g., RF, Modem, 1/0O, as defined in SCA section 4.2.2 HWModule(s) Class
Structure).

<! ELEMENT devi cecl ass
(class+
) >
<! ELEMENT cl ass (#PCDATA) >

D.3.1.4.6 childhwdevice.

The childhwdevice element indicates additional device-specific information for hardware devices
that make up the root or parent hardware device registration. An example of childhwdevice
would be aradio's RF module that has receiver and exciter functions within it. In this case, a CF
Device representing the RF module itself would be a parent Device with its DPD, and the
receiver and exciter are child devicesto the module. The parent / child relationship indicates that
when the RF module is removed from the system, the receiver and exciter devices are also
removed.

<! ELEMENT chi | dhwdevi ce
(hwdevi ceregistration
| devi cepkgr ef
) >

D.3.1.4.7 hwdeviceregistration.
The hwdeviceregistration element provides device-specific information for the child hardware
device. See D.3.1.4 for definition of the hwdeviceregistration element.

D.3.1.4.8 devicepkgref.
The devicepkgref element is used to indicate the local filename of a Device Package Descriptor
file pointed to by Device Package Descriptor (e.g., a devicepkg within a devicepkg).

<! ELEMENT devi cepkgr ef
(localfile
) >
<! ATTLI ST devi cepkgr ef
type CDATA #1 MPLI ED>

D-13

M SRC-5000SCA
Appendix D
rev. 2.1

D.4 PROPERTIESDESCRIPTOR.

The property file details component, device or home attribute settings. For purposes of the SCA,
property fileswill contain simple, simplesequence, test, struct and structsequence elements. The
properties element will be used to describe attributes of a component that will be used for
dependency checking. The properties element will also be used for SCA component values of
the configure(), query(), and runTest() operations of the CF Resource component.

D.4.1 properties.

The properties element is used to describe property attributes that will be used in the configure()
and query() operationsfor SCA CF Resource components and for definition of attributes used
for dependency checking. Properties can also used in the CF TestableObject runTest() operation
to configure tests and provide test results.

<! ELEMENT properties

(description?
(sinple
| sinpl esequence

| test

| struct
| structsequence
)+

) >

D411 smple

The simple element provides for the definition of a property which includes a unique id, name,
type, and value of the property attribute that will be used in the CF Resource configure() and
query() operations, for indication of component capabilities, or in the CF TestableObject
runTest operation. The simple element is specifically designed to support id-value pair
definitions. A simple property id attribute corresponds to the id of the id-value pair and the
value, and range of asimple property correspond to the value of theid-value pair. If novalueis
given then the property cannot be used for input test values for testing and/or as an initial
configuration or execute parameter of acomponent. The optional enumerations element allows
for the definition of alabel to value for a particular property. The mode element defines whether
the properties element is readonly, writeonly or readwrite. Theid element is an identifier for the
properties. Theid for asimple property that is an allocation typeisa DCE UUID vaue as
specified in section Theid for al other simple properties can be any valid XML 1D type.
The mode attribute is only meaningful when the kind element is configured.

<! ELEMENT si npl e
(description?
, val ue?
, units?
, range?
, enunerations?
, ki nd*
, action?
)>

D-14

MSRC-5000SCA

Appendix D
rev. 2.1 |
<I ATTLI ST sinple

id I D #REQUI RED
type (boolean | char | double | float

| short | long | objref | octet

| string | ulong | ushort) #REQUI RED |
name CDATA #| MPLI ED

node (readonly | readwite | witeonly) “readwite”> |

D.41.1.1 description.
The description element is used to provide a description of the properties element that is being
defined.

<! ELEMENT descri ption (#PCDATA) >

D.4.1.12 value
The value element is used to provide a value setting to the properties element. ’

<! ELEMENT val ue (#PCDATA) >

D.41.13 units. |
The units element describes the intended practical data representation to be used for the
properties element.

<! ELEMENT units (#PCDATA)>

D.4.1.14 range. |
The range element describes the specific min and max values that are legal for the simple

element. Theintent of the range element is to provide a means to perform range validation.

This element is not used by the CF ApplicationFactory or CF Application implementations.

<! ELEMENT range EMPTY

<I ATTLI ST range
mn CDATA #REQUI RED
max CDATA #REQUI RED>

D.4.1.15 enumerations.
The enumerations element is used to specify one or more enumeration el ements.

<! ELEMENT enuner ati ons
(enuneration+
) >

D-15

MSRC-5000SCA
Appendix D
| rev. 2.1

The enumeration element is used to associate values for the given property attribute alabel to
each specific value of the property attribute. Enumerations are legal for specific properties
elements of various integer types. An Enumeration value is assigned to a property that
implements the CORBA long type. Enumeration values are implied; if not specified by a
developer, theinitia implied value is 0 and subsequent values are incremented by 1.

| Note: The advantage of the enumeration element over the sequence element from the CORBA
components specification is that the enumeration element provides a mechanism to associate a
value of aproperty to alabel. The sequence element of the CORBA component specification
does not allow association of values (only lists of sequences).

<! ELEMENT enunerati on EMPTY>
<! ATTLI ST enunerati on
| abel CDATA #REQUI RED
val ue CDATA #| MPLI ED>

D.4.1.16 kind.
The kind element is used to specify the kind of property. The types of kinds are:

1. configure which isused in the configure() and query () operations of the CF Resource
interface. The CF ApplicationFactory will use these properties to build the CF
Properties input parameter to the configure () operation that is invoked on the CF
Resour ce components during application creation. The CF ApplicationFactory will also
use these properties for CF ResourceFactory create options parameters. When the mode
isreadonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. test whichisused intherunTest() operation in the CF TestableObject interface. The CF
ApplicationFactory will use these properties as the unsigned long input parameter to the
runTest() operation that isinvoked on the CF Resource components during application
creation. Therefore, any simple element that has “test” specified in the kind e ement must
have a type attribute of “ulong’”.

3. dlocation which is used in the allocateCapacity() and deall ocateCapacity() operations
of the CF Device interface. The CF DeviceManager will use these properties to build the
CF DataType inout parameter to the allocateCapacity() operation that isinvoked on the
CF Device components during application creation. Allocation properties that are
external can also be queried using the CF PropertySet query operation.

4. execparam which is used in the execute operations of the CF Deviceinterface. The CF
DeviceManager will use these properties to build the CF Properties input parameter to
the execute() or excuteProcess() operation that isinvoked on the CF Device components
during CF Device and/or CF Application creation. Only simple elements can be used as
execparam types.

5. factoryparam which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use these properties to build the CF
Properties input parameter to the createResource() operation.

D-16

MSRC-5000SCA
Appendix D
rev. 2.1 |

A property can have multiple kinds and the default is configure. ’

<! ELEMENT ki nd EMPTY>
<! ATTLI ST ki nd
kindtype (allocation | configure | test |
execparam | factoryparan) “configure”>

D.4.1.17 action. |
The action element is used to describe the relationship used in comparison of the property
attribute during the process of checking SPD dependencies. The type attribute of the simple
element will determine the type of comparison to be done when checking the dependency against
the property that has been defined.

In principle the action defines the operation executed during the comparison of the allocation
property value provided by the SPD dependency element against the associated allocation
property value of a CF Device. The alocation property is on the left side of the action and the
dependency value is on the right side of the action. This process allows for the alocation of
appropriate objects within the system based on their attributes as defined by the dependent

rel ationships.

For example, if a CF Device's properties file defines an allocation DeviceKind property where
the action element is set to "equal”, then at the time of dependency checking avalid DeviceKind
property is checked for equality. If a software component implementation is dependent on a
DeviceKind property with avalue set to "NarrowBand", then the component's SPD dependency
propertyref will reference the id of the allocation DeviceKind property with a value of
"NarrowBand". At time of dependency checking the CF ApplicationFactory will check CF
Devices that have a DeviceKind allocation property for equality against a"NarrowBand" value.

<! ELEMENT action EMPTY>
<ATTLI ST action
type (eq | ne | gt | It |
ge | le | external) "external">

D.4.1.2 simplesequence. |

The simplesequence element is used to specify alist of properties with the same characteristics
(e.g., type, range, units, etc.). Thisdefinition issimilar to the simple element except for a
simplesequence element has alist of valuesinstead of one value. The simplesequence element |
maps to the sequence types defined in the CF and PortTypes CORBA modul es based upon the
type element. ’

<! ELEMENT si npl esequence
(description?
, val ues? ’
, units?
, range?
, ki nd*
, action?
) >
<I ATTLI ST si npl esequence
id I D #REQUI RED
type (boolean | char | double | float

D-17

MSRC-5000SCA

Appendix D
rev. 2.1
| short | long | objref | octet
| string | ulong |ushort) #REQUI RED
nane CDATA #1 MPLI ED

node (readonly | readwite | witeonly) “readwite”>

<! ELEMENT val ues
(val ue+
)>

D413 test.

Thetest element is used to specify alist of test properties for executing a component specific
test. Thisdefinition contains inputvalue and resultvalue elements and it has a testid attribute for
grouping test properties to a specific test. Inputvalues are used to configure the test to be
performed (e.g., frequency and RF power output level). When the test has compl eted,
resultvalues contain the results of the testing (e.g., Pass or afault code/message).

<! ELEMENT t est
(description
, 1 nputval ue?
, resultval ue
)>

<! ATTLI ST test
id I D #REQUI RED>

D.4.1.31 inputvalue.
The inputvalue element is used to provide test configuration properties.

<! ELEMENT i nput val ue

(sinple+
)>

D.4.1.3.2 resultvalue.
The resultvalue element is used to provide test result properties.

<! ELEMENT resul tval ue

(sinmple+
) >

D.414 struct.

The struct element is used to group properties with different characteristics (i.e., smilarto a
structure or record entry). Each item in the struct element can be a different simple type (e.g.,
short, long, etc.). The struct element corresponds to the CF Properties type where each struct
item (1D, value) correspondsto a properties list item. The properties|list sizeis based on the
number of struct items.

D-18

MSRC-5000SCA
Appendix D
rev. 2.1 |

<! ELEMENT st ruct
(description?

, Ssinple+
, configurationkind?
) >
<! ATTLI ST struct
id ID #REQUI RED
name CDATA #1 MPLI ED
node (readonly | readwite | witeonly) "readwite">"

D.4.1.4.1 configurationkind.
The configurationkind element is used to specify the kind of property. The types of kinds are:

1. configure which isused in the configure() and query () operations of the SCA
Resource interface. The CF ApplicationFactory will use these properties to build the CF
Properties input parameter to the configure () operation that isinvoked on thecr
Resour ce components during application creation. When the mode is readonly, only the
query behavior is supported. When the mode iswriteonly, only the configurebehavior is
supported. When the mode is readwrite, both configure and query are supported.

2. factoryparam which is used in the createResour ce operations of the
CF ResourceFactory interface. The CF ApplicationFactory will use these properties to
build the CF Properties input parameter to the createResource() operation.”

<! ELEMENT confi gurati onki nd EMPTY>
<! ATTLI ST confi gurati onki nd
ki ndtype (configure | factoryparam “configure”>

D.415 structsequence.

The structsequence element is used to specify alist of properties with the same struct
characteristics. The structsequence element maps to a properties element having the CF
Propertiestype. Each item in the CF Properties type will be the same struct definition as
referenced by thestructrefid attribute.

<! ELEMENT struct sequence
(description?
, Structval ue+
, configurationkind?

) >
<I ATTLI ST structsequence
id I D #REQUI RED

structrefid CDATA #REQUI RED
nane CDATA #1 MPLI ED
node (readonly | readwite | witeonly) "readwite">

<! ELEMENT structval ue
(sinmpleref+
)>

<! ELEMENT si npl eref EMPTY>
<! ATTLI ST si npl er ef
refid CDATA #REQUI RED

D-19

M SRC-5000SCA
Appendix D
rev. 2.1

val ue CDATA #REQUI RED>"

D.5 SOFTWARE COMPONENT DESCRIPTOR.

This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF ResourceFactory that are described by the
software component descriptor are based on the SCA CF specification, and the following
specification concentrates on definition of the elements necessary for describing the ports and
interfaces of these components.

<! ELEMENT sof t war econponent

(corbaversion
conponentr epi d
conponent t ype
conponent f eat ur es
i nterfaces

, propertyfile?

) >

D.5.1 softwarecomponent.

The softwarecomponent element is the root element to the software component descriptor file.
For use within the SCA the sub-elements that are supported include:

corbaversion — indicates which version of CORBA the component is developed for.
componentrepid — is the repository id of the component

componenttype — identifies the type of software component object
componentfeatures — provides the supported message ports for the component
interface — describes the component unique id and name for supported interfaces.

moow»

D.5.1.1 corbaversion.

The corbaversion element is intended to indicate the version of CORBA that the delivered
component supports.

<! ELEMENT cor baver si on (#PCDATA) >

D.5.1.2 componentrepid.

The componentrepid uniquely identifies the interface that the component isimplementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
derived from the CF Resource, CF Device, or CF ResourceFactory.

<! ELEMENT conponentrepi d EMPTY>
<! ATTLI ST conponentrepid
repid CDATA #REQUI RED>

D-20

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.5.1.3 componenttype.

The componenttype describes properties of the component. For SCA components, the
component types include resource, device, resourcefactory, domainmanager, logger, filesystem,
filemanager, devicemanager, namingservice.

<! ELEMENT conponenttype (#PCDATA) >

D.5.1.4 componentfeatures.

The componentfeatures element is used to describe a component with respect to the components
that it inherits from, the interfaces the component supports, and its provides and uses ports. At a
minimum, the component interface has to be a CF Resource, CF ResourceFactory, or CF Device
interface. If acomponent extends the CF Resource or CF Device interface then al the inherited
interfaces (e.g., CF Resource) are depicted as supportsinterface elements.

<! ELEMENT conponent f eat ur es
(supportsinterface*
, ports
) >

D.5.1.4.1 supportsinterface.

The supportsinterface element is used to identify an IDL interface that the component supports.
These interfaces are distinct interfaces that were inherited by the component’ s specific interface.
One can widen the component’ s interface to be a supportsinterface. The repid is used to refer to
the interface element (see interfaces sectionD.5.1.5). |

<! ELEMENT supportsinterface EMPTY>

<! ATTLI ST supportsinterface
repid CDATA #REQUI RED
supportsnane CDATA #REQUI RED>

D.5.14.2 ports.

The ports element describes what interfaces a component provides and uses. The provides
elements are interfaces not part of the component interface but are independent interfaces known
as facets (in CORBA Components terminology) (i.e. aprovides port at the end of a path, like
I/O Device or Modem Device, does not need to be a CF Port type). The uses element are CF
Port interface types that are connected to other interfaces (provides or supportinterfaces). Any
number of uses and provides elements can be given in any order. Each ports element has a name
and references an interface by repid (see interfaces section D.5.1.5). The port names areused in |
the Software Assembly Descriptor for use when connecting ports together. A ports element also
has an optional porttype element that allows for identification of port classification. Valuesfor
porttype include “data’, “control”, “responses’, and “test”. If aporttypeis not given then control
is assumed.

D-21

M SRC-5000SCA
Appendix D
rev. 2.1

<I ELEMENT ports
(provides
| uses
)*>

<! ELEMENT provi des
(porttype*)>

<! ATTLI ST provi des
repid CDATA #REQUI RED
provi desnane CDATA #REQUI RED>

<! ELEMENT uses
(porttype*)>

<! ATTLI ST uses
repid CDATA #REQUI RED
usesnane CDATA #REQUI RED>

<!l ELEMENT porttype EMPTY>
<I ATTLI ST porttype
type (data | control | responses | test) #REQU RED>

D.5.15 interfaces.
The interfaces el ement is made up of one to many interface elements.

<! ELEMENT i nterfaces
(interface+
)>

The interface element describes an interface that the component, either directly or through
inheritance, provides, uses, or supports. The name attribute is the character-based non-qualified
name of the interface. The repid attribute is the unique repository id of the interface which has

| formats specified in the CORBA specification. The repid is also used to reference an interface
element elsewhere in the descriptor, for example from the inheritsinterface element.

<! ELEMENT interface
| (inheritsinterface*)>
<I ATTLI ST interface
| repid CDATA #REQUI RED
name CDATA #REQUI RED>

<! ELEMENT i nheritsinterface EMPTY>

<I ATTLI ST inheritsinterface
repid CDATA #REQUI RED

D.5.1.6 propertyfile.
Refer to section D.2.1.1 propertyfile for description and definition of propertyfile.

D-22

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.6 SOFTWARE ASSEMBLY DESCRIPTOR.

This section describes the XML elements of the Software Assembly Descriptor (SAD). The
SAD isbased on the CORBA Components Specification Component Assembly Descriptor. The
intent of the software assembly isto provide the means of describing the assembled functional
application and the interconnection characteristics of the SCA components within that
application. The component assembly provides four basic types of application information for
Domain Management. Thefirst is partitioning information that indicates specia requirements
for collocation of components, the second is the assembly controller for the software assembly,
the third is connection information for the various components that make up the application
assembly, and the fourth is the visible ports for this assembly.

The installation of an application into the system involves the installation of a SAD file. The |
component assembly will either reference the components that are already installed in the target
platform or causes the loading of the appropriate component softpkg.

Theid attribute isa DCE UUID that uniquely identifies the assembly. ThisidisaDCE UUID
value as specified in section D.2.1. The name is the user-friendly name for the CF
ApplicationFactory name attribute.

<! ELEMENT sof t war eassenbl y
(description?
, conponentfiles
, partitioning
, assenbl ycontroller
, connections?
, external ports?

) >
<! ATTLI ST sof t war eassenbl y
id ID #REQUI RED

name CDATA #| MPLI ED>

D.6.1 description.

The description element of the component assembly may be used to describe any information the
developer would like to indicate about the assembly.

<! ELEMENT descri ption (#PCDATA) >

D.6.2 componentfiles.

The componentfiles element is used to indicate that an assembly is made up of 1..n component
files. The componentfile is a software package descriptor.

<! ELEMENT conponentfil es
(conponentfil e+
) >

D-23

MSRC-5000SCA
Appendix D
| rev. 2.1

D.6.2.1 componentfile.

The componentfileis areferenceto alocal file. See section D.2.1.1.1 for the definition of the
localfile element. The type element is* Software Package Descriptor”

<! ELEMENT conponentfile
(localfile

) >
<! ATTLI ST conponentfile
id ID #REQUI RED

type CDATA #l MPLI ED>

D.6.3 partitioning.

Component partitioning specifies a deployment pattern of homes and their components to hosts.
A particular usage of acomponent is always relative to a component home. A component
| instantiation is captured inside a componentplacement. The hostcollocation element allows for
definition of several homes and their components to be placed on acommon device. When the
| componentplacement is by itself, not inside a hostcollocation, it then has no collocation
constraints.

<! ELEMENT partitioning
(conponent pl acenent
| hostcollocation
)*>

D.6.3.1 componentplacement.

The componentplacement element is used to define a particular deployment of a component
home. The componentplacement element will be used for deploying a component through the
use of a CF ResourceFactory in the SCA CF.

<! ELEMENT conponent pl acenent
(conponentfileref
, conponentinstantiation+
) >

D.6.3.1.1 componentfileref.
The componentfileref element is used to reference a particul ar software component descriptor file
or software package by its associated id. The refid attribute corresponds to the componentfile id.

<! ELEMENT conponentfil eref EMPTY>

D-24

MSRC-5000SCA
Appendix D
rev. 2.1 |

<! ATTLI ST conponentfil eref
refid CDATA #REQUI RED>

D.6.3.1.2 componentinstantiation. |
The componentinstantiation element is intended to describe a particular instantiation of a
component relative to a componentplacement element. The componentinstantiation has an id
attribute that isintended to identify the component and an usagename element that is intended

for an applicable name for the instantiation. The componentinstantiation id may be referenced

by the usesport and providesport elements within the assembly file.

The optional componentproperties element isalist of configure, factoryparam, and/or execparam
properties values that are used in creating the component or for the initial configuration of the
component. |

The following sources will be searched for componentinstantiation element “execparam” and
“readwrite and writeonly configure” propertiesinitial valuesin the given precedence order:

1. The componentproperties element of the componentinstantiation element in SAD,
2. Thevalue or default value if any from the SPD precedent property definition as stated in |
D.2.1.

The following sources will be searched for componentinstantiation componentr esour cefactoryr ef
element “factoryparam” propertiesinitial valuesin the given precedence order:

A. The resourcefactoryproperties element of the componentresour cefactoryref element in
the SAD,

B. The componentproperties element of the componentinstantiation element in SAD,

C. Thevalue or default value if any from the SPD precedent property definition as stated in
D.2.1.

The optional findcomponent element is used to obtain the CORBA object reference for the
component instance. The two methods for obtaining a CORBA object reference are:

i. The componentresourcefactoryref element refersto a particular CF ResourceFactory
componentinstantiation found in the assembly descriptor, which is used to obtain a CF
Resource instance for this componentinstantiation element. The refid attribute refersto a
unique componentinstantiation id attribute. The componentresour cefactoryref el ement
contains an optional resourcefactoryproperties element which are the qualifiers
properties for the CF Resour ceFactory create call.

ii. The CORBA Naming Serviceis used to find the component CORBA object reference.
The name specified in the namingservice element is a partial name that is used by the CF
ApplicationFactory to form the complete context name.

The optional findcomponent element should be specified except when there is no CORBA object
reference for the component instance (e.g., DSP code).

<! ELEMENT conponentinstantiati on
(usagenane?
, conponent properties?

D-25

, findconponent?

)>
<! ATTLI ST conponentinstantiati on
id I D #REQUI RED>

<! ELEMENT usagenane (#PCDATA) >

<! ELEMENT conponent properties
(sinpleref
| sinpl esequencer ef
| structref
| structsequenceref
)+ >

<! ELEMENT fi ndconponent
(conponent resour cef act or yr ef
| nam ngservice
) >

<! ELEMENT conponentresour cef act oryr ef
(resourcefactoryproperties?
) >

<! ATTLI ST conponentresour cef act or yr ef
refid CDATA #REQUI RED>

<! ELEMENT resourcefactoryproperties
(sinpleref
| sinpl esequencer ef
| structref
| structsequencer ef
)+ >

<! ELEMENT si npl eref EMPTY>

<! ATTLI ST si npl er ef
refid CDATA #REQUI RED
val ue CDATA #REQUI RED>

<! ELEMENT si npl esequencer ef
(val ues
)>

<! ATTLI ST si npl esequencer ef
refid CDATA #REQUI RED>

<! ELEMENT structref
(sinpleref+
)>

<I ATTLI ST structref
refid CDATA #REQUI RED>

<! ELEMENT st ruct sequencer ef
(structval ue+
)>

<! ATTLI ST structsequencer ef
refid CDATA #REQUI RED>

<! ELEMENT structval ue
(sinmpleref+
)>

<! ELEMENT val ues

(val ue+
)>

D-26

M SRC-5000SCA
Appendix D
rev. 2.1

MSRC-5000SCA
Appendix D
rev. 2.1 |

<! ELEMENT val ue (#PCDATA) >

D.6.3.2 hostcollocation.

The hostcollocation element specifies a group of component instances that are to be deployed
together in asingle host. For purposes of the SCA, the componentplacement element will be
used to describe the 1...n components that will be collocated on the same host platform. Within
the SCA specification a host platform will be interpreted as asingle device. Theid and name
attributes are optional but may be used to uniquely identify a set of collocated components
within an assembly file.

<! ELEMENT host col | ocati on
(conponent pl acenent

) +>
<! ATTLI ST hostcol |l ocati on
id I D #| VPLI ED

name CDATA #| MPLI ED>

D.6.3.2.1 componentplacement.
See componentplacement, section D.6.3.1.

D.6.4 assemblycontroller.

The assemblycontroller element indicates the component that is the main CF Resource controller
for the assembly. The CF Application object delegates its CF Resource start, stop, runTest
operations to this assemblycontroller component.

<! ELEMENT assenbl ycontrol | er
(conponentinstantiati onref
) >

D.6.5 connections.

The connections element is a child element of the softwareassembly. The connections element is
intended to provide the connection map between components in the assembly.

<! ELEMENT connecti ons
(connectinterface*
) >

D.6.5.1 connectinterface. |

The connectinterface element is used to describe the connections between the port component
interfaces for the assembly of components. The connectinterface el ement consists of a usesport
element and a providesport, componentsupportedinterface, or findby element. These elements
are intended to connect two compatible components.

D-27

M SRC-5000SCA
Appendix D
rev. 2.1

<! ELEMENT connectinterface
(usesport
(providesport
| component supportedi nterface
| findby
)

) >

<! ATTLI ST connectinterface
id I D #| MPLI ED>

| D.6.5.1.1 usesport.

The usesport element identifies, using the usesidentifier element, the component port that is
using the provided interface from the providesport element. A CF Resource type component
may be located by one of four methods. One method is to use the componentinstantiationref that
refers to the componentinstantiation id (see componentinstantiation) within the assembly; the
other techniques are findby, devicethatloadedthiscomponentref, and

devi ceusedbythiscomponentr ef.

<! ELEMENT usesport
(usesidentifier
(conponentinstantiati onref
| devi cet hat| oadedt hi sconponent r ef
| devi ceusedbyt hi sconponentr ef
| findby
)

)>

D.6.5.1.1.1 usesidentifier.

The usesidentifier element identifies which uses “port” on the component isto participate in the
connection relationship. Thisidentifier will correspond with an id for one of the component
ports specified in the software component descriptor.

<! ELEMENT usesi dentifier (#PCDATA) >

D.6.5.1.1.2 componentinstantiationref.

The componentinstantiationref element refersto the id reference of the componentinstantiation
within the assembly descriptor file. The refid attribute will correspond to the unique
componentinstantiation id attribute.

<! ELEMENT conponenti nstanti ati onref EMPTY>
<! ATTLI ST conponenti nstanti ati onref
refid CDATA #REQUI RED>

D-28

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.65.113 findby.

The findby element is used to resolve a connection between two components. It tellsthe Domain
Management function how to locate a component interface involved in the relationship of a
connection. The namingservice element specifies a naming service name to search, and the
stringifiedobjectref element is a stringified object reference (IOR) for the desired component
interface.

The domainfinder element specifies an el ement within the domain that the Domain Management
function knows about.

<! ELEMENT fi ndby

(nami ngservice

| stringifiedobjectref
donmai nfi nder

I
) >

D.6.5.1.1.3.1 namingservice.

The namingservice element is a child element of findby. The namingservice element is used to
indicate to the CF DomainManager the requirement to find a component interface. The CF
DomainManager will use the name attribute to search the CORBA naming service for the
appropriate interface.

<! ELEMENT nani ngservi ce EMPTY
<! ATTLI ST nami ngservice
nane CDATA #REQUI RED>

D.6.5.1.1.3.2 dtringifiedobjectref.

The stringifiedobjectref element is achild element of findby. The stringifiedobjectref element is
used to indicate to the CF DomainManager the necessary information to find a component
interface by its object reference.

<! ELEMENT stringifi edobj ectref (#PCDATA) >

D.6.5.1.1.3.3 domainfinder.

The domainfinder element is achild element of findby. The domainfinder element is used to
indicate to the CF ApplicationFactory the necessary information to find an object reference that
is of specific type and may also be known by an optional name within the domain. Thevalid
types are “filemanager”, “logger”, and “namingservice’. If nameis not supplied then the
component reference returned is the CF DomainManager’ s FileManager, FileSystem, or naming
service corresponding to the type provided. If nameisnot supplied and the typeis“log” then a
null referenceis returned.

<! ELEMENT domai nfi nder EMPTY>

D-29

M SRC-5000SCA
Appendix D
rev. 2.1

<! ATTLI ST domai nfi nder
type CDATA #REQUI RED
nane CDATA #| MPLI ED

D.6.5.1.1.4 devicethatloadedthiscomponentref.

The devicethatl oadedthi scomponentref element refers to a specific component found in the
assembly. Thisreferenced component is used to obtain from the CF ApplicationFactory the
logical CF Device that was used to |oad the referenced component. This obtained logical device
is associated with this component instance. This relationship is needed when a component (e.g.,
modem adapter) is pushing or pulling data and/or commands to a non-CORBA capable device
such as modem.

<! ELEMENT devi cet hat | oadedt hi sconponent ref EMPTY>
<! ATTLI ST devi cet hat | oadedt hi sconponent r ef
refid CDATA #REQUI RED>

D.6.5.1.1.5 deviceusedbythiscomponentref.

The deviceusedbythiscomponentref element refers to a specific component found in the
assembly. This referenced component is used to obtain from the CF ApplicationFactory the CF
Device (e.g., logical Device) that is being used by this referenced component. This relationship
is needed when a component is pushing or pulling data and/or commands to another component
that exists in the system such as an audio device.

<! ELEMENT devi ceusedbyt hi sconmponent ref EMPTY>
<! ATTLI ST devi ceusedbyt hi sconponent r ef
refid CDATA #REQUI RED
usesrefid CDATA #REQUI RED>

D.6.5.1.2 providesport.

The providesport element identifies, using the providesidentifier element, the component port
that is providing to the usesport interface within the connectinterface element. A CF Resource
type component may be located by one of four methods. One method is to use the
componentinstantiationref that refers to the componentinstantiation id (see
componentinstantiation) within the assembly; the other techniques are findby,

devi cethatl oadedthi scomponentref, and deviceusedbythiscomponentref. The findby element by
iteself is used when the object reference is not a CF Resource type.

<! ELEMENT provi desport
(providesidentifier
, (conponentinstantiati onref
| devi cet hat| oadedt hi sconponent r ef
| devi ceusedbyt hi sconponent r ef
| findby
)

)>

D-30

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.6.5.1.21 providesidentifier.

The providesidentifier element identifies which provides “port” on the component is to
participate in the connection relationship. This identifier will correspond with an id for one of
the component ports specified in the software component descriptor.

<! ELEMENT provi desi dentifier (#PCDATA) >

D.6.5.1.2.2 componentinstantiationref.
See D.6.5.1.1.2 for a description of the componentinstantiationref element.

D.65.1.23 findby.

See section D.6.5.1.1.3 for a description of the findby element. The namingservice name denotes
a complete naming context.

D.6.5.1.2.4 devicethatl oadedthiscomponentref.
See D.6.5.1.1.4 for adescription of the devicethatl oadedthi scomponentref element.

D.6.5.1.25 deviceusedbythiscomponentref.
See D.6.5.1.1.5 for a description of the deviceusedbythi scomponentref el ement.

D.6.5.1.3 componentssupportedinterface.

Specifies a component with a supports interface that can satisfy an interface

connection to a uses port within a connectinterface element. The component is

identified by a componentinstantiationref or afindby element. The
componentinstantiationref identifies a component within the assembly. The findby

element points to an existing component that can be found within a naming service or using a
stringified object reference.

<! ELEMENT conponent support edi nterface
(supportedidentifier
, (conponentinstantiationref
| findby
)

) >

D.6.5.1.3.1 supportedidentifier.

The supportedidentifier element identifies which supported interface on the component is to
participate in the connection relationship. Thisidentifier will correspond with an id for one of
the component supported interface specified in the software component descriptor.

<! ELEMENT supportedi dentifier (#PCDATA) >

D.6.5.1.3.2 componentinstantiationref.
See section D.6.5.1.1.2 for a description of the componentinstantiationref element.

D-31

MSRC-5000SCA
Appendix D
| rev. 2.1

| D.6.5.1.3.3 findby.
See section D.6.5.1.1.3 for a description of the findby element.

D.6.6 externalports.

The optional externalports element is a child element of the softwareassembly. The
externalports element is used to identify the visible ports for the software assembly. The CF
Application getport () operation is used to access the assembly visible ports.

<! ELEMENT external ports
(port+
) >

<! ELEMENT port
(description?
, (usesidentifier | providesidentifier
supportedi dentifier)
, conponentinstantiationref
)>
<! ELEMENT descri ption (#PCDATA) >

D-32

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.7 DEVICE CONFIGURATION DESCRIPTOR.

This section describes the XML elements of the Device Configuration Descriptor (DCD). The
DCD is based on the SAD (e.g., componentfiles, partitioning, etc.) DTD. The intent of the DCD |
isto provide the means of describing the components that are initially started on the CF
DeviceManager node, how to obtain the CF DomainManager object reference, connections of
services to components (CF Devices, CF DeviceManager), and the characteristics (file system
names, etc.) for a CF DeviceManager. The componentfiles and partitioning elements are

optional; if not provided, that means no components are started up on the node, except for a CF
DeviceManager. If the partitioning element is specified then a componentfiles element has to be
specified also.

Theid attribute is a unique identifier within the domain for the device configuration. Thisid
attribute can be a UUID value as specified in section D.2.1 or a manufacturer’s part number —
serial number string, for example. The name attribute is the user-friendly name for the CF
DeviceManager’s label attribute.
<! ELEMENT devi ceconfi guration
(description?
, devi cenmanager sof t pkg |
, componentfil es?
, partitioning?
, connections? |
, domai nnanager
, filesystemanes?
) ><! ATTLI ST devi ceconfi guration

id ID #REQUI RED
name CDATA #| MPLI ED>

D.7.1 description.

The optional description element of the device configuration may be used to provide information
about the device configuration.

<! ELEMENT descri pti on (#PCDATA) >

D.7.2 devicemanagersoftpkg.

The devicemanager softpkg el ement refers to the SPD for the CF DeviceManager that
corresponds to this DCD. The SPD fileisreferenced by alocalfile element. This SPD can be
used to describe the CF DeviceManager implementation and to specify the usesports for the
services (Log(s), etc.) used by the CF DeviceManager. See (section D.2.1.1.1) for description of
the localfile element.

<! ELEMENT devi cemanager sof t pkg
(localfile
) >

D-33

M SRC-5000SCA
Appendix D
rev. 2.1

D.7.3 componentfiles.

The optional componentfiles element is used to indicate that a node uses 1..n component filesto
define the components that are started up on the node. The componentfile is a software package
descriptor. The SPD for example, can be used to describe logical Devices, CF DeviceManager,
CF DomainManager, naming service, and CF FileSystems. Refer to section D.6.2 for
componentfiles definition.

D.7.4 partitioning.

The optional partitioning element consists of a set of componentplacement elements. A
component instantiation is captured inside a componentplacement.

<! ELEMENT partitioning
(conponent pl acenent
)*>

D.74.1 componentplacement.

The componentplacement element is used to define a particular deployment of a component.
The componentfileref el ement identifies the component to be deployed. The
componentinstantiation element identifies the actual component created and its id attributeis a
DCE UUID vaue with the format as specified in section D.2.1. Multiple components of the
same kind can be created within the same componentplacement el ement.

The optional deployondevice element indicates the device the componentinstantiation element is
deployed on. The optional compositepartofdevice element indicates the device the
componentinstantiation element is an aggregate of (aggregation relationship). When the
component isalogica Device, the devicepkgfile element is specified to indicate the hardware
device information for the logical Device.

<! ELEMENT conponent pl acenent
(conponentfileref
, depl oyondevi ce?
, conpositepartofdevice?
, devi cepkgfile?
, conponentinstantiation+
)>

D.74.1.1 componentfileref.
The componentfileref element is used to reference a component file within the componentfiles
element. The refid attribute corresponds to the componentfile id.

<! ELEMENT conponentfil eref EMPTY>
<! ATTLI ST conponentfil eref
refid CDATA #REQUI RED>

MSRC-5000SCA
Appendix D
rev. 2.1 |

D.74.1.2 deployondevice.
The deployondevice element is used to reference a componentinstantiation element on which this
componentinstantiation is deployed.

<! ELEMENT depl oyondevi ce EMPTY>
<I ATTLI ST depl oyondevi ce
refid CDATA #REQUI RED>

D.7.4.1.3 devicepkdfile.
The devicepkgfile element is used to refer to a device package file that contains the hardware
device definition.

<! ELEMENT devi cepkgfile
(localfile
) >
<! ATTLI ST devi cepkgfile
type CDATA #| MPLI ED>

D.7.4.1.31 localfile.
See D.2.1.1.1 for adefinition of the localfile element.

D.74.1.4 compositepartofdevice.
The compositepartofdevice element is used to reference a componentinstantiation element of
which that this componentinstantiation element is a part (aggregate relationship).

<! ELEMENT conpositepartof device EMPTY>
<! ATTLI ST conpositepart of devi ce
refid CDATA #REQUI RED>

D.7.4.1.5 componentinstantiation.

The componentinstantiation element is intended to describe a particular instantiation of a
component relative to a componentplacement element. The componentinstantiation element has
an id attribute that is intended to identify the component and a usagename element that is
intended for an applicable name for the component. The optional componentproperties element
isalist of property values that are used in configuring the component. D.6.3.1.2 has the property
list for the componentinstantiation element initial properties values. For acomponent service
type (e.g, Log), the usagename element needs to be unique for that service type.

<! ELEMENT conponentinstantiati on
(usagenane?
, conponent properties?

)>
<! ATTLI ST conponentinstantiati on
id I D #REQUI RED>

D-35

M SRC-5000SCA
Appendix D
rev. 2.1

<! ELEMENT usagenane (#PCDATA) >

<! ELEMENT conponent properties
(sinpleref

| sinpl esequencer ef

| structref

| structsequenceref

)+ >
<! ELEMENT si npl eref EMPTY><! ATTLI ST si npl er ef

refid CDATA #REQU RED
val ue CDATA #REQUI RED>

<! ELEMENT si npl esequencer ef
(val ues
)>

<I ATTLI ST si npl esequencer ef
refid CDATA #REQUI RED>

<! ELEMENT structref
(sinpleref+
)>
<I ATTLI ST structref
refid CDATA #REQUI RED>

<! ELEMENT st ruct sequencer ef
(structval ue+
)>
<I ATTLI ST struct sequencer ef
refid CDATA #REQUI RED>
<! ELEMENT st ructval ue
(sinmpleref+
) >

<! ELEMENT val ues
(val ue+
) >

<! ELEMENT val ue (#PCDATA) >

D.7.5 connections.

The connections element in the DCD is the same as the connections element in the SAD in
section D.6.5. The connections element in the DCD is used to indicate the services (Log, €tc...)
instances that are used by the CF DeviceManager and CF Device componentsin the DCD. The
CF DomainManager will parse the connections element and make the connections when the CF
DeviceManager registers with the CF DomainManager. To establish connectionsto a CF
DeviceManager the DCD’s id attribute value is used for the usesport componentinstantiationr ef
refid value.

D.7.6 domainmanager.
The domainmanager element indicates how to obtain the CF DomainManager object reference.

See sections D.6.5.1.1.3.1 and D.6.5.1.1.3.2 for description of the namingservice and
stringifiedobjectref elements.

D-36

MSRC-5000SCA
Appendix D
rev. 2.1 |

<! ELEMENT domai nmanager

. (nam ngservice |
| stringifiedobjectref
)>

<! ELEMENT nami ngservi ce EMPTY>
<! ATTLI ST nami ngservice
nane CDATA #REQUI RED>

<! ELEMENT stringifi edobj ectref (#PCDATA) >

D.7.7 filesystemnames.

The optional filesystemnames element indicates the mounted file system names for CF
DeviceManager's FileManager.

<! ELEMENT fil esyst etmanes
(fil esystemane+
)+

<! ELEMENT fil esyst emmane EMPTY>

<I ATTLI ST fil esyst emmane
mount name CDATA #REQUI RED
devi cei d CDATA #REQUI RED>

D-37

M SRC-5000SCA
Appendix D
rev. 2.1

D.8 DOMAINMANAGER CONFIGURATION DESCRIPTOR.

This section describes the XML elements of the DomainManager Configuration Descriptor
(DMD). The DMD is used to describe the CF DomainManager .

<! ELEMENT donai nmanager confi gurati on
(description?
, domai nnanager sof t pkg

, services
) >

<I ATTLI ST donai nmanager confi gurati on
id I D #required

nane #CDATA #required>

D.8.1 description.

The optional description element of the DM D may be used to provide information about the
configuration.

<! ELEMENT descri pti on (#PCDATA) >
D.8.2 domainmanagersoftpkg.

The domainmanager softpkg el ement refers to the SPD for the CF DomainManager. The SPD
fileisreferenced by alocalfile element. This SPD can be used to describe the CF
DomainManager implementation and to specify the usesports for the services (Log(s), etc...)
used by the CF DomainManager. See section D.2.1.1.1 for description of the localfile element.

<! ELEMENT donai nmanager sof t pkg
(localfile
) >

D.8.3 services.

The services element in the DMD is used by the CF DomainManager to determine which service
(Log, etc...) instances to use. See section D.6.5.1.1.3 for a description of the findby element.

<! ELEMENT servi ces
(service+
) >
<! ELEMENT service
(usesidentifier
, findby
) >

D.9 PROFILE DESCRIPTOR.

The profile element can be used to specify the absolute profile file pathname relative to a
| mounted CF FileSystem. The filename attribute is the absolute pathname relative to amounted

D-38

MSRC-5000SCA
Appendix D
rev. 2.1 |

FileSystem. Thisfilename can also be used to access any other local file elementsin the profile.
The type attribute indicates the type of profile being referenced. The valid type attribute values
are“SAD”, “SPD”, “DCD”, and “DMD”. This element can be given out for any CF interface
(e.g., CF Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF
DomainManager) that has profile attributes.

<! ELEMENT profile EMPTY>

<I ATTLI ST profile
fil ename CDATA #REQUI RED
type CDATA #1 MPLI ED>

D-39

M SRC-5000SCA
Appendix D
rev. 2.1
D.10 DOCUMENT TYPE DEFINITIONS.

Attachment 1 to Appendix D contains the complete DTDs for the Domain Profile. Thistext file
of the DTDsis available electronically.

D-40

	DOMAIN PROFILE
	DEPLOYMENT OVERVIEW.
	SOFTWARE PACKAGE DESCRIPTOR.
	Software Package.
	propertyfile.
	localfile.

	title.
	author.
	description.
	descriptor.
	implementation.
	propertyfile.
	description.
	code.
	compiler.
	programminglanguage.
	humanlanguage.
	os.
	processor.
	dependency.
	softpkgref.
	propertyref.

	runtime.

	usesdevice.
	propertyref.

	DEVICE PACKAGE DESCRIPTOR.
	Device Package.
	title.
	author.
	description.
	hwdeviceregistration.
	propertyfile.
	description.
	manufacturer.
	modelnumber.
	deviceclass.
	childhwdevice.
	hwdeviceregistration.
	devicepkgref.

	PROPERTIES DESCRIPTOR.
	properties.
	simple.
	description.
	value.
	units.
	range.
	enumerations.
	kind.
	action.

	simplesequence.
	test.
	inputvalue.
	resultvalue.

	struct.
	configurationkind.

	structsequence.

	SOFTWARE COMPONENT DESCRIPTOR.
	softwarecomponent.
	corbaversion.
	componentrepid.
	componenttype.
	componentfeatures.
	supportsinterface.
	ports.

	interfaces.
	propertyfile.

	SOFTWARE ASSEMBLY DESCRIPTOR.
	description.
	componentfiles.
	componentfile.

	partitioning.
	componentplacement.
	componentfileref.
	componentinstantiation.

	hostcollocation.
	componentplacement.

	assemblycontroller.
	connections.
	connectinterface.
	usesport.
	usesidentifier.
	componentinstantiationref.
	findby.
	namingservice.
	stringifiedobjectref.
	domainfinder.

	devicethatloadedthiscomponentref.
	deviceusedbythiscomponentref.

	providesport.
	providesidentifier.
	componentinstantiationref.
	findby.
	devicethatloadedthiscomponentref.
	deviceusedbythiscomponentref.

	componentssupportedinterface.
	supportedidentifier.
	componentinstantiationref.
	findby.

	externalports.

	DEVICE CONFIGURATION DESCRIPTOR.
	description.
	devicemanagersoftpkg.
	componentfiles.
	partitioning.
	componentplacement.
	componentfileref.
	deployondevice.
	devicepkgfile.
	localfile.

	compositepartofdevice.
	componentinstantiation.

	connections.
	domainmanager.
	filesystemnames.

	DOMAINMANAGER CONFIGURATION DESCRIPTOR.
	description.
	domainmanagersoftpkg.
	services.

	PROFILE DESCRIPTOR.
	DOCUMENT TYPE DEFINITIONS.

